Preparation and X-ray Structure of a Trinuclear Rhodium Complex with the Polydentate 1,8-Naphthyridine-2-one (Onapy) Ligand:  $[Rh_3(\mu_3-Onapy)_2-(CO)_2(cod)_2](CIO_4) \cdot 1.5C_2H_4Cl_2$ 

### ANTONIO TIRIPICCHIO, FERNANDO J. LAHOZ

Istituto di Chimica Generale ed Inorganica, Università di Parma, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., Via M. D'Azglio 85, 43100 Parma, Italy

LUIS A. ORO, MIGUEL A. CIRIANO and B. EVA VILLARROYA

Departamento de Química Inorgánica, Universidad de Zaragoza, 50009 Saragossa, Spain

Received May 24, 1985

As part of our studies exploring the use of polydentate nitrogen-donor ligands for the construction of bi- and polynuclear rhodium(I) and iridium(I) complexes we have examined the coordinative behaviour of 1,8-naphthyridine (napy) [1] and 7azaindole [2]. These ligands have the same structural elements as bis(diphenylphosphino)methane (dppm), *i.e.* two donor centers bonded through a single carbon atom but in a rigid framework. On the other hand, these bidentate nitrogen-donor ligands promote a *cis*-Rh<sub>2</sub>( $\mu$ -N-C-N)<sub>2</sub> arrangement in their binuclear complexes that differs from the usual *trans*-Rh<sub>2</sub>( $\mu$ dppm)<sub>2</sub> disposition for the related bis(diphenylphosphino)methane complexes [3].

Balch and coworkers have reported the preparation and properties of trinuclear rhodium(I) complexes with the ligand bis(diphenylphosphinomethyl)phenylphosphine (dpmp) (A) [4]. In this context,



we have recently hypothesized the ability of the 1,8-naphthyridine-2-one ligand (B) to promote the formation of trinuclear rhodium complexes [5], and herein we describe the preparation and X-ray structure of one of the trinuclear complexes formed by the polydentate 1,8-naphthyridine-2-one ligand (Onapy).

The trinuclear complex  $[Rh_3(\mu_3-Onapy)_2(CO)_2-(cod)_2](ClO_4)$  can be prepared by slow addition of the solvated intermediate  $[Rh(CO)_2(Me_2CO)_x]$ - $(ClO_4)$  (0.1 mmol) to a dichloromethane solution of the yellow mononuclear compound [Rh(Onapy)-(cod)] (cod: 1,5-cyclooctadiene) (0.2 mmol). After working-up, the complex was isolated and characterized by elemental analyses, conductivity measurements and IR spectroscopy. Furthermore, violet prismatic crystals of  $[Rh_3(\mu_3-Onapy)_2(CO)_2(cod)_2]$ - $(ClO_4)\cdot 1.5C_2H_4Cl_2$ , suitable for an X-ray analysis, were obtained by slow diffusion of pentane into a solution of the complex in 1,2-dichloroethane at -10 °C. One of them, with approximate dimensions  $0.20 \times 0.25 \times 0.30$  mm, was used for the data collection.

### Crystal Data

 $C_{37}H_{40}Cl_4N_4O_8Rh_3$ , M = 1119.27, triclinic, a = 18.558(4), b = 19.044(4), c = 12.398(6) Å,  $\alpha =$ 69.79(2),  $\beta = 88.86(2)$ ,  $\gamma = 88.56(2)^{\circ}$ , V = 4110(2)Å<sup>3</sup> (by least-squares refinement of the  $\theta$  values of 30 selected reflections accurately measured in the range 11–22°), space group  $P\bar{1}$ , Z = 4,  $D_c$  = 1.81 g cm<sup>-3</sup>,  $\mu$ (Mo K $\alpha$ ) = 14.88 cm<sup>-1</sup>, F(000) = 2228. Philips PW 1100 diffractometer,  $\omega/2\theta$  mode; monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71069$  Å); 12 419 reflections measured  $(3 \le \theta \le 24^\circ)$ , of which 8706 unique reflections were considered observed  $[I \ge$  $3\sigma(I)$ ; usual Lorentz and polarization reduction; absorption correction was applied using a semiempirical method with maximum and minimum corrections of 1.26 and 1.00 [6]. The structure was solved by direct (MULTAN) and conventional Fourier methods. Full matrix least-squares refinement was carried out with anisotropic thermal parameters for the metals and atoms directly bonded to them (excepting those of the diolefinic ligands). Three independent solvent molecules were found, one of them being partially disordered. Three positions were assigned for the atoms disordered with occupancy factors 0.4 [Cl(23), C(23)], 0.3 [Cl(33), C(33)] and 0.3 [Cl(43), C(43)]. No attempt was made to calculate the hydrogen atoms. Weighting scheme used:  $w = 1.6868/[\sigma^2(F_o) + 0.005 F_o^2]$ . Final R and R' values were 0.059 and 0.073. Final atomic coordinates for the non-hydrogen atoms are given in Table I. Thermal parameters and a list of structural factors are available from the authors on request.

In the crystal structure of  $[Rh_3(\mu_3-Onapy)_2-(CO)_2(cod)_2](CIO_4)\cdot 1.5C_2H_4Cl_2$  two crystallographically independent (but practically equal) trinuclear cations and perchlorate anions are present together with three independent 1,2-dichloroethane molecules of crystallization. A view of the structure of the cation with the atomic numbering scheme is shown in Fig. 1, together with some significant bond distances (the values referring to the second independent cation are between brackets hereafter). The cationic complex, having an approximate  $C_2$ symmetry, is trinuclear with two Onapy ligands triply bridging the metals through their two N atoms

## © Elsevier Sequoia/Printed in Switzerland

| TABLE                                             | I. | Fractional | Atomic | Coordinates | (X10 <sup>4</sup> ) | with |  |  |  |  |  |
|---------------------------------------------------|----|------------|--------|-------------|---------------------|------|--|--|--|--|--|
| e.s.d.s in Parentheses for the Non-hydrogen Atoms |    |            |        |             |                     |      |  |  |  |  |  |

TABLE I (continued)

| •          |                    |            |           |      |           |          |            |
|------------|--------------------|------------|-----------|------|-----------|----------|------------|
| Atom       | xla                | v/h        | 7/c       | Atom | x/a       | y/b      | z/c        |
|            | 2/2                | <i>J10</i> |           | C141 | 9633(5)   | 8626(5)  | -2136(8)   |
| Rh11       | 7546(1)            | 7577(1)    | 1273(1)   | C142 | 4425(6)   | 8791(6)  | 3489(9)    |
| Rh12       | 2338(1)            | 7379(1)    | 6670(1)   | C151 | 9824(6)   | 8888(6)  | -1224(9)   |
| Rh21       | 7983(1)            | 6975(1)    | -504(1)   | C152 | 4554(6)   | 8997(7)  | 4492(10)   |
| Rh22       | 2907(1)            | 6958(1)    | 4769(1)   | C161 | 9501(6)   | 8588(6)  | -151(9)    |
| Rh31       | 8463(1)            | 6694(1)    | -2571(1)  | C162 | 4258(6)   | 8596(7)  | 5477(10)   |
| Rh32       | 3504(1)            | 6880(1)    | 2624(1)   | C171 | 8994(5)   | 8001(5)  | 38(8)      |
| C11        | 4770(2)            | 1484(2)    | 1410(3)   | C172 | 3753(5)   | 8010(5)  | 5535(8)    |
| C12        | 8807(2)            | -561(2)    | 2583(4)   | C181 | 9156(5)   | 8014(5)  | -1876(8)   |
| 011        | 6750(5)            | 5949(6)    | -210(8)   | C182 | 4012(5)   | 8183(5)  | 3583(8)    |
| 012        | 1778(5)            | 5820(5)    | 4964(8)   | C191 | 6489(6)   | 7779(7)  | 1730(10)   |
| 021        | 8869(5)            | 5826(5)    | 1257(7)   | C192 | 1246(6)   | 7437(6)  | 7173(10)   |
| 022        | 3817(4)            | 5706(4)    | 6304(7)   | C201 | 6428(9)   | 7873(10) | 2902(14)   |
| 031        | 7487(4)            | 7282(4)    | -2997(6)  | C202 | 1197(7)   | 7450(7)  | 8388(11)   |
| 032        | 2455(4)            | 7366(4)    | 2242(6)   | C211 | 7105(8)   | 7574(8)  | 3647(12)   |
| 041        | 8671(4)            | 7748(4)    | 1006(6)   | C212 | 1787(7)   | 6955(7)  | 9190(11)   |
| 042        | 3419(3)            | 7690(4)    | 6482(6)   | C221 | 7716(6)   | 7330(6)  | 3058(9)    |
| N11        | 7385(4)            | 8498(4)    | -341(7)   | C222 | 2480(6)   | 6962(6)  | 8494(9)    |
| N12        | 2073(4)            | 8334(4)    | 5134(7)   | C222 | 7751(6)   | 6669(6)  | 2800(10)   |
| N21        | 7428(4)            | 7878(4)    | 1679(7)   | C231 | 2671(6)   | 6392(6)  | 8046(9)    |
| N22        | 2256(4)            | 7874(4)    | -1079(7)  | C232 | 7202(8)   | 6087(0)  | 3064(13)   |
| N21        | 2230(4)            | 7740(4)    | 2706(7)   | C241 | 7202(8)   | 5745(7)  | 9136(10)   |
| 1421       | 3007(4)            | 7022(5)    | = 2700(7) | C242 | 2173(7)   | 5743(7)  | 2465(10)   |
| NA1        | 2907(4)<br>2941(4) | 7952(3)    | 2098(7)   | C251 | 0492(8)   | 5094(9)  | 2403(13)   |
| N40        | 3660(4)            | 7720(4)    | -790(0)   | C252 | 13/8(7)   | 3764(6)  | 1525(10)   |
| N42        | 3009(4)<br>7000(6) | (252(7)    | 4005(0)   | C261 | 0507(0)   | /100(/)  | 1555(10)   |
|            | 7209(0)            | (3)((1))   | -299(10)  | C262 | 1330(6)   | 6/95(6)  | 0855(9)    |
| C12<br>C11 | 2202(6)            | 0200(0)    | 4890(10)  | C2/1 | 8104(6)   | 6041(6)  | -3532(10)  |
| C21        | 8525(0)            | 6234(6)    | 582(9)    | C272 | 3247(6)   | 6241(6)  | 1601(9)    |
| 022        | 3483(5)            | 6191(6)    | 5/3/(9)   | C281 | 8696(7)   | 5874(8)  | -4226(11)  |
| 051        | 4224(6)            | 2055(6)    | 1240(9)   | C282 | 3896(9)   | 6119(10) | 933(15)    |
| 052        | 8/06(/)            | 99(8)      | 2826(11)  | C291 | 9432(8)   | 5794(8)  | -3693(12)  |
| 061        | 4/81(6)            | 1013(6)    | 2577(9)   | C292 | 4588(7)   | 6310(7)  | 1236(11)   |
| 062        | 8587(10)           | -1232(11)  | 3571(16)  | C301 | 9479(6)   | 6273(7)  | -2908(10)  |
| 0/1        | 4567(7)            | 1019(8)    | 817(11)   | C302 | 4567(6)   | 6631(7)  | 2186(10)   |
| 0/2        | 8384(11)           | -613(11)   | 1796(17)  | C311 | 9318(6)   | 5990(6)  | -1730(9)   |
| 081        | 5420(7)            | 1808(8)    | 1069(11)  | C312 | 4431(6)   | 6203(6)  | 3340(9)    |
| 082        | 9543(9)            | -654(9)    | 2387(14)  | C321 | 9084(7)   | 5166(7)  | -1083(10)  |
| C31        | 7325(6)            | 9141(6)    | -111(9)   | C322 | 4277(7)   | 5377(7)  | 3772(11)   |
| C32        | 1875(6)            | 8945(6)    | 5448(9)   | C331 | 8404(7)   | 4971(8)  | -1627(11)  |
| C41        | 7142(6)            | 9837(7)    | -975(11)  | C332 | 3531(9)   | 5185(10) | 3468(14)   |
| C42        | 1539(7)            | 9577(7)    | 4684(11)  | C341 | 7956(6)   | 5657(6)  | - 2339(10) |
| C51        | 6982(6)            | 9859(7)    | -2059(10) | C342 | 3096(6)   | 5835(7)  | 2713(10)   |
| C52        | 13/5(7)            | 9610(7)    | 3618(11)  | CIII | 4578(2)   | 3209(3)  | 4263(4)    |
| C61        | /0/1(6)            | 9186(6)    | -2329(9)  | CI12 | 6446(2)   | -227(3)  | 3570(4)    |
| C62        | 1592(5)            | 9010(6)    | 3252(9)   | Cl21 | 5050(2)   | 4240(3)  | 1523(4)    |
| C/I        | 6929(6)            | 9154(7)    | -3435(10) | C122 | 7184(2)   | 1443(3)  | 466(4)     |
| C72        | 1438(6)            | 9004(7)    | 2137(10)  | C351 | 4398(9)   | 2984(9)  | 2963(13)   |
| C81        | 7055(6)            | 8511(7)    | -3648(10) | C352 | 6674(10)  | 266(11)  | 2031(16)   |
| C82        | 1699(6)            | 8419(6)    | 1816(9)   | C361 | 5000(8)   | 3287(9)  | 2097(13)   |
| C91        | /325(5)            | 7874(5)    | -2745(8)  | C362 | 6998(10)  | 944(11)  | 2016(16)   |
| C92        | 2154(6)            | 7833(6)    | 2628(9)   | CI13 | 9667(3)   | 2550(3)  | 5800(5)    |
| C101       | 7283(5)            | 8527(5)    | -1444(8)  | C133 | 9602(12)  | 3276(12) | 8652(19)   |
| C102       | 1978(5)            | 8383(5)    | 4056(8)   | C13  | 10075(14) | 2477(14) | 7078(23)   |
| C111       | 9221(6)            | 8085(6)    | - 3794(9) | C33  | 10023(63) | 3143(43) | 7469(87)   |
| C112       | 4185(6)            | 8334(6)    | 1661(9)   | C123 | 9863(9)   | 3842(9)  | 6884(14)   |
| C121       | 9667(5)            | 8691(6)    | -4088(9)  | C143 | 9229(12)  | 3341(12) | 7777(19)   |
| C122       | 4569(7)            | 8986(7)    | 1485(11)  | C23  | 9612(38)  | 2915(36) | 7692(55)   |
| C131       | 9894(6)            | 8964(6)    | - 3254(9) | C43  | 10089(32) | 3226(45) | 7240(124)  |
| C132       | 4723(6)            | 9204(7)    | 2367(10)  |      |           |          |            |



Fig. 1. View of the cationic complex  $[Rh_3(\mu-Onapy)_2(CO)_2(cod)_2]^+$  showing the atomic numbering scheme. Selected bond distances (A): Rh(1)-Rh(2) 2.907(3) [2.911(3)], Rh(1)-N(1) 2.178(7) [2.185(7)], Rh(1)-O(4) 2.123(8) [2.092(6)], Rh(2)-Rh(3) 2.912(2) [2.910(2)], Rh(2)-N(2) 2.093(7) [2.095(7)], Rh(2)-N(4) 2.101(8) [2.103(8)], Rh(2)-C(1) 1.842(12) [1.847(12)], Rh(2)-C(2) 1.865(10) [1.865(9)], Rh(3)-N(3) 2.188(8) [2.188(10)], Rh(3)-O(3) 2.083(7) [2.215(7)]. The two values refer to the first and second crystallographically independent cations in the unit cell (those of the second are between brackets).

and the ketonic oxygen. If the midpoints of the olefinic bonds of the cod ligands are taken into account, all three Rh atoms show slightly distorted, but different, square planar environments. The central Rh atom, Rh(2), is bound to two N atoms of the Onapy ligands and to two carbon atoms from terminal carbonyls; the two terminal Rh atoms, Rh(1) and Rh(3), are bound to a ketonic oxygen and to a pyridinic nitrogen atom from two Onapy ligands and complete their coordination through the two olefinic bonds of a cod molecule.

The three Rh atoms show an approximate linear arrangement, the Rh(1)-Rh(2)-Rh(3) angle being 168.2(1) [ $167.8(1)^{\circ}$ ]. Similar linear or slightly bent trinuclear Rh complexes supported by P-donor ligands and CO or halide bridges have been recently

reported [4]. As far as we know, this is the first trinuclear Rh(I) complex characterized crystallographically with a nearly linear arrangement of metal atoms supported only by a N- and O-donor ligand.

The Rh-Rh distances, 2.907(3) [2.911(3)] and 2.912(2) [2.910(2)] Å, are rather short and comparable to those found in the related binuclear complexes  $[Rh_2(\mu-Onapy)_2(CO)_4]$  [5] and  $[Rh_2(\mu-napy)_2(nbd)_2]^{2+}$  [1], 2.880(2) and 2.916(3) Å respectively; these separations are generally considered indicative of metal-metal interactions.

As in the related binuclear complex  $[Rh_2(\mu-Onapy)_2(CO)_4]$  [5], the two Onapy ligands are roughly planar, forming a dihedral angle between the mean planes passing through them of 125.2(2) [113.7(2)°].

# Acknowledgement

We are grateful to the Comisión Asesora de Investigación Científica y Técnica (C.A.Y.C.T.) for financial support (Project 1790/82).

### References

- 1 A. Tiripicchio, M. Tiripicchio-Camellini, R. Usón, L. A. Oro, M. A. Ciriano and F. Viguri, *J. Chem. Soc., Dalton Trans.*, 125 (1984).
- 2 L. A. Oro, M. A. Ciriano, B. E. Villarroya, A. Tiripicchio and F. J. Lahoz, J. Chem. Soc., Chem. Commun., 521 (1984); J. Chem. Soc., Dalton Trans., in press.
- 3 R. J. Puddephatt, Chem. Soc. Rev., 11, 99 (1982).
- 4 R. R. Guimerans, M. M. Olmstead and A. L. Balch, J. Am. Chem. Soc., 105, 1677 (1983); Inorg. Chim. Acta, 84, L21 (1984); Inorg. Chem., 22, 2473 (1983); J. Organomet. Chem., 268, C38 (1984).
- 5 A. M. Manotti-Lanfredi, A. Tiripicchio, R. Usón, L. A. Oro, M. A. Ciriano and B. E. Villarroya, *Inorg. Chim. Acta*, 88, L9 (1984).
- 6 A. C. T. North, D. C. Phillips and F. C. Mathews, Acta Crystallogr., Sect. A:, 24, 351 (1968).